# The Second Largest Eigenvalue of a Tree* 

A. Neumaier<br>Institut für Angewandte Mathematik<br>Universität Freiburg, West Germany

Submitted by N. Biggs


#### Abstract

Denote by $\lambda_{2}(T)$ the second largest eigenvalue of a tree $T$. An easy algorithm is given to decide whether $\lambda_{2}(T) \leqslant \lambda$ for a given number $\lambda$, and a structure theorem for trees with $\lambda_{2}(T) \leqslant \lambda$ is proved. Also, it is shown that a tree $T$ with $n$ vertices has $\lambda_{2}(T) \leqslant[(n-3) / 2]^{1 / 2}$; this bound is best possible for odd $n$.


## 1. INTRODUCTION

Suppose that $T$ is a tree, and $\lambda$ is a nonnegative real number. In this paper we investigate the question: When is the second largest eigenvalue $\lambda_{2}(T)$ of $T$ smaller than (or equal to) $\lambda$ ? As basic tool we use the concepts of partial eigenvectors and exitvalues. A partial eigenvector satisfies the eigenvector equation at all vertices but one; the difference at this vertex is given by the exitvalue. The distribution of zeros and signs in the partial eigenvector and the exitvalue is shown to determine the location of $\lambda$ within the spectrum of $T$. Among other things, we derive from this the following structure theorem (cf. Theorem 4.3 below): Let $T$ be a tree with $\lambda_{2}(T) \leqslant \lambda$. Then either $T$ contains a vertex $x$ such that $\lambda_{1}(T-(x)) \leqslant \lambda$; or $T$ is a $\lambda$-twin, i.e., $T$ has the shape

with subtrees $T_{1}$ and $T_{2}$ satisfying $\lambda_{1}\left(T_{i}-\left\{x_{i}\right\}\right)<\lambda<\lambda_{1}\left(T_{i}\right)$ for $i=1,2$. (Here $\lambda_{1}$ denotes the largest eigenvalue.) Also, we find an upper bound $\lambda_{2}(T)$

[^0]$\leqslant \sqrt{(n-3) / 2}$ on the second largest eigenvalue of a tree with $n$ vertices, and we determine completely the (infinitely many) trees achieving the bound.

The motivation for the problem considered stems from hyperbolic geometry: The bilinear form associated with a reflection group with Dynkin diagram $T$ is spherical, affine, or hyperbolic iff $\lambda_{2}(T) \leqslant 2$. The spherical and affine reflection groups are well known, and Koszul [7] determined the Dynkin diagrams for the minimal hyperbolic reflection groups.

To attack the problem of constructing and classifying other hyperbolic reflection groups, a simple decision algorithm for $\lambda_{2}(T) \leqslant 2$ is needed. This was found tractable for trees and led to the present results. Applications to reflection groups will be reported elsewhere.

## 2. EXITVALUES

In this section, $T$ is a connected graph (undirected, without loops or multiple edges). We denote by $A$ the adjacency matrix of $T$, i.e. the matrix $A=\left(a_{x y}\right)_{x, y \in T}$ indexed by the vertices of $T$, such that $a_{x y}=1$ if $x y$ is an edge, and $a_{x y}=0$ otherwise. The characteristic polynomial of $T$ is denoted by $P_{T}(\lambda)=\operatorname{det}(\lambda I-A)$. We denote the eigenvalues of $A$, in decreasing order, by

$$
\lambda_{1}(T)>\lambda_{2}(T) \geqslant \cdots \geqslant \lambda_{n}(T)
$$

( $n=$ number of vertices of $T$ ) and call them the eigenvalues of $T$ (similarly for eigenvectors). The eigenvalues of the subgraph $T \backslash\{x\}$ obtained by deleting the vertex $x \in T$ and the edges containing $x$ are related to the eigenvalues of $T$ by the interlacing property

$$
\begin{equation*}
\lambda_{i+1}(T) \leqslant \lambda_{i}(T-\{x\}) \leqslant \lambda_{i}(T) \tag{IP}
\end{equation*}
$$

for $i=1, \ldots, n-1$ (see [2] for a proof).
Let the term $\lambda$-eigenvalue denote an eigenvector of $T$ whose corresponding eigenvalue is $\lambda$. So $e$ is a $\lambda$-eigenvector (and $\lambda$ is an eigenvalue) iff $e$ is nonzero and satisfies the relation

$$
\begin{equation*}
\sum_{y \sim x} e_{y}=\lambda e_{x} \tag{1}
\end{equation*}
$$

for all $x \in T$; here $\sim$ means "adjacent." We call a vector $e$ a partial
$\lambda$-eigenvector with respect to a vertex $z \in T$ if $e_{z}=1$, and (1) holds for all $x \in T \backslash\{z\}$; in this case the number

$$
\begin{equation*}
\varepsilon_{T, \tilde{z}}(\lambda)=\lambda-\sum_{y \sim z} e_{y} \tag{2}
\end{equation*}
$$

is called a $\lambda$-exitvalue of $T$ with respect to $z$. If the $\lambda$ exitvalue $\varepsilon$ is zero, then $\lambda$ is an eigenvalue of $T$, and $e$ a corresponding eigenvector; if $\varepsilon$ is nonzero, then it can be thought of as the entry of $e$ at a hypothetical further vertex $\infty$ adjacent with $z$. For a tree, the equations (1) can be solved recursively by assigning to some end vertex $x$ the number $e_{x}=1$; in this way, one usually gets a multiple of a partial eigenvector.

Remark. If no confusion is possible, we delete the prefix " $\lambda$-" from expressions like " $\lambda$-eigenvector" or " $\lambda$-exitvalue."

Example. The following diagrams represent some partial eigenvectors and exitvalues for $\lambda=2$. The reader can easily check the relations (1) and (2) for the vector $e$ whose $x$-entry is $\sigma$ times the label of vertex $x$.


$$
\sigma=\frac{1}{3}, \quad \varepsilon_{z}=\frac{2}{3} .
$$



$$
\sigma=\frac{1}{4}, \quad \varepsilon_{z}=\frac{1}{4} .
$$

For an explanation of the fact that all entries are positive see Theorem 2.4.

Theorem 2.1. Suppose that the real number $\lambda$ is not an eigenvalue of $T-\{z\}$. Then, with respect to $z$, there is a unique partial $\lambda$-eigenvector, and
the exitvalue satisfies

$$
\begin{equation*}
\varepsilon_{T, \tilde{z}}(\lambda)=\frac{P_{T}(\lambda)}{P_{T \backslash\{z\}}(\lambda)} \tag{3}
\end{equation*}
$$

Proof. Denote by $\delta_{z}=\left(\delta_{x z}\right)_{x \in T}$ the $z$ th column of the identity matrix $I$, i.e., $\delta_{z}$ is the characteristic vector of $z$. Then $e$ is a partial $\lambda$-eigenvector and $\varepsilon$ the corresponding exitvalue iff $e$ is a solution of the homogeneous equation

$$
\begin{equation*}
\left(\lambda I-A-\varepsilon \delta_{z} \delta_{z}^{T}\right) e=0 \tag{4}
\end{equation*}
$$

with side condition

$$
\begin{equation*}
\delta_{z}^{T} e=1 \tag{4a}
\end{equation*}
$$

Case 1: $\lambda I-A$ is nonsingular. Then (4) implies $e=\varepsilon(\lambda I-A)^{-1}$ $\delta_{\tilde{z}}\left(\delta_{z}^{T} e\right)=\varepsilon(\lambda I-A)^{-1} \delta_{z}$, and (4a) implies that $\varepsilon^{-1}=\delta_{z}^{T}(\lambda I-A)^{-1} \delta_{\tilde{z}}=$ $\tilde{P}_{T \backslash\{z\}}(\lambda) / P_{T}(\lambda)$, by Cramer's rule. Hence $\varepsilon$ and $e$ are unique, and in fact these expressions satisfy (4), (4a). Moreover, (3) holds.

Case 2: $\lambda I-A$ is singular. Then $\lambda$ is an eigenvalue of $T$. Let $e$ be a corresponding eigenvector. If $e_{z}=0$, then $e$ is also a $\lambda$-eigenvector of $T \backslash\{z\}$, contradiction. Hence we may normalize $e$ so that $e_{z}=1$; then $e$ is a partial eigenvector with exitvalue $\varepsilon=0$, and (3) holds. If $e^{\prime}$ is another partial $\lambda$-eigenvector, then $e^{\prime}-e$ is a $\lambda$-eigenvector of $T \backslash\{z\}$ whence $e^{\prime}=e$.

Since the eigenvalues of $T \backslash\{z\}$ interlace the eigenvalues of $T$, (3) implies the following useful results.

Corollary 2.2. If $\lambda$ is an eigenvalue of $T$ but not of $T \backslash\{z\}$, then $\lambda$ is a simple eigenvalue, $\varepsilon_{T, z}(\lambda)=0$, and the partial $\lambda$-eigenvector with respect to $z \in T$ is the unique $\lambda$-eigenvector $e$ with $e_{z}=1$.

Corollary 2.3. Between two consecutive eigenvalues of $T \backslash\{z\}$, and in the two infinite intervals remaining, $\varepsilon_{T, z}(\lambda)$ is an increasing function of $\lambda$ and assumes every value once.

Partial eigenvectors and exitvalues can be used for the location of eigenvalues of $T$. The main tool is the following:

Theorem 2.4. Suppose that the real number $\lambda$ is not an eigenvalue of $T \backslash\{z\}$. If $e(z)$ and $\varepsilon_{z}$ denote the partial eigenvector and the exitvalue with
respect to $z$, then:
(i) $\lambda_{1}(T)<\lambda$ iff $e(z)>0, \varepsilon_{z}>0$.
(ii) $\lambda_{1}(T)=\lambda$ iff $e(z)>0, \varepsilon_{z}=0$.
(iii) $\lambda_{1}(T-\{z\})<\lambda<\lambda_{1}(T)$ iff $e(z)>0, \varepsilon_{z}<0$.

Remark. Motivated by Theorem 2.4(iii), we call a graph $T \lambda$-critical at $z$ if $\lambda_{1}(T \backslash\{z\})<\lambda<\lambda_{1}(T)$.

Proof. By (3), $\varepsilon_{z}=0$ if $\lambda_{1}(T)=\lambda$, so the statements follow from Corollary 2.3 if we can show that $e(z)>0$ iff $\lambda_{1}(T-\{z\})<\lambda$.

Now (4) holds with $\varepsilon=\varepsilon_{z}, e=e(z)$; hence for $B=A+\varepsilon \delta_{z} \delta_{z}^{T}$, we have $B e=\lambda e$, and for any $s, B+s I$ has the eigenvalue $\lambda+s$ and corresponding eigenvector $e$. But for large $s, B+s I$ is an irreducible nonnegative matrix. Hence the Frobenius-Perron theory (see e.g. [1]) shows that $e$ is positive iff $\lambda$ is the largest eigenvalue of $B$. But the proof of Theorem 2.1 shows that $t I-B$ is singular iff $\varepsilon=\varepsilon_{T, z}(t)$. Hence the eigenvalues of $B$ are the solutions of $\varepsilon_{T, z}(t)=\varepsilon=\varepsilon_{T, z}(\lambda)$. So, by Corollary 2.3, $\lambda$ is the largest eigenvalue of $B$ iff $\lambda>\lambda_{1}(T \backslash\{z\})$.

Example. We determine all connected graphs $T$ with largest eigenvalue $<2$. Since a circuit is regular of valency 2 , it has eigenvalue 2 and cannot be an induced subgraph of $T$. Hence $T$ is a tree. By Theorem 2.4(i), we have to find all trees with partial 2-eigenvector $e(z)>0$ and 2-exitvalue $\varepsilon_{z}>0$ for some vertex $z$. If $T$ is a chain, then (up to a scaling factor) $e(z)$ and $\varepsilon_{z}$ are given by


Similarly, we have


Hence these graphs have $\lambda_{1}(T)<2$. Now the minimal trees not of type $A_{n}$,
$D_{n}$ or $E_{6}, E_{7}, E_{8}$ are

and

$\tilde{E}_{7}:$

$\tilde{E}_{8}:$


The vectors given are eigenvectors, and the exitvalue at any vertex is zero. Hence $A_{n}, D_{n}, E_{6}, E_{7}, E_{8}$ are the only trees with largest eigenvalue $<2$. In fact $\tilde{D}_{n}, \tilde{E}_{6}, \tilde{E}_{7}$, and $\bar{E}_{8}$ are the only trees with largest eigenvalue 2 (among the nontrees, only the circuits $\tilde{A_{n}}$ occur). The results are all classical.

Example. In his lectures on hyperbolic coxeter groups, Koszul [7] determined all minimal Dynkin diagrams with $\lambda_{1}>2$ (Theorems 18-1 and 18-2). We reproduce here those diagrams which are trees without multiple edges. We also give the 2 -exitvalue and a multiple of the partial 2 -eigenvector with respect to a suitable vector indicated by $z$. This is sufficient to check that $\lambda_{1}>2$. Minimality and completeness are easily deduced from the previous example.



$$
\varepsilon=-\frac{1}{2}
$$

Remark. We shall call a graph $T$ Euclidean if $\lambda_{1} \leqslant 2$, and hyperbolic if $\lambda_{2} \leqslant 2<\lambda_{1}$. We call $T$ spherical if $\lambda_{1}<2$, affine or affine Euclidean if $\lambda_{1}=2$, and affine hyperbolic if $\lambda_{2}=2$.

Now we consider graphs of shape

which we abbreviate by ( $T_{1}, x_{1}, x_{2}, T_{2}$ ). Thus the symbol means that $T_{1}$ and $T_{2}$ are graphs with disjoint vertex sets, $x_{1} \in T_{1}, x_{2} \in T_{2}$, and ( $T_{1}, x_{1}, x_{2}, T_{2}$ ) is the graph obtained from the disjoint union of $T_{1}$ and $T_{2}$ by adding the single edge $x_{1} x_{2}$. In Section 4 we shall need a special case: We call ( $T_{1}, x_{1}, x_{2}, T_{2}$ ) a $\lambda$-twin if, for $i=1,2, T_{i}$ is $\lambda$-critical at $x_{i}$.

From [2, Theorem 2.12] we have

Proposition 2.5. The characteristic polynomial of $T=\left(T_{1}, x_{1}, x_{2}, T_{2}\right)$ is

$$
P_{T}(\lambda)=P_{T_{1}}(\lambda) P_{T_{2}}(\lambda)-P_{T_{1} \backslash\left\{x_{1}\right\}}(\lambda) P_{T_{2} \backslash\left\{x_{2}\right\}}(\lambda) .
$$

As a consequence, we get the following theorem, whose importance will become clear in Section 4.

Theorem 2.6. Let $T=\left(T_{1}, x_{1}, x_{2}, T_{2}\right)$ be a $\lambda$-twin. For $i=1,2$, denote by $\varepsilon_{i}$ the (negative) exitvalue of $T_{i}$ with respect to $x_{i}$. Then:
(i) $\lambda_{2}(T)<\lambda$ iff $\varepsilon_{1} \varepsilon_{2}<1$.
(ii) $\lambda_{2}(T)=\lambda$ iff $\varepsilon_{1} \varepsilon_{2}=1$.
(iii) $\lambda_{2}(T)>\lambda$ iff $\varepsilon_{1} \varepsilon_{2}>1$.

Proof. Since $T_{i}$ is $\lambda$-critical at $x_{i}$, we have $P_{i}(t):=P_{T_{i} \backslash\left(x_{i}\right\}}(t)>0$ for all $t \geqslant \lambda$. In particular, the exitvalues $\varepsilon_{i}(t):=\varepsilon_{T_{i}, x_{i}}(t)$ are defined. Now by Theorem 2.1 and Proposition 2.5,

$$
\begin{equation*}
P_{T}(t)-\left[\varepsilon_{1}(t) \varepsilon_{2}(t)-1\right] P_{1}(t) P_{2}(t) \tag{5}
\end{equation*}
$$

Put $\lambda_{1}=\lambda_{1}(T), \lambda_{2}=\lambda_{2}(T)$, and denote by $\lambda_{3}$ the largest eigenvalue of $T$ strictly smaller than $\lambda_{2}$. Then $P_{T}(t)$ is negative for $\lambda_{2}<t<\lambda_{1}$, zero for $t=\lambda_{2}$, and positive for $\lambda_{3}<t<\lambda_{2}$. On the other hand, $T_{1}$ and $T_{2}$ are $\lambda$-critical at $x_{1}$ and $x_{2}$, respectively, whence $T \backslash\left\{x_{1}\right\}$ has largest eigenvalue $>\lambda$, and $T \backslash\left\{x_{1}, x_{2}\right\}$ has largest eigenvalue $<\lambda$. So, by interlacing, $\lambda_{3}<\lambda<$ $\lambda_{1}$, and we get the result by putting $t=\lambda$ into (5).

We also have some information on the eigenvectors of ( $T_{1}, x_{1}, x_{2}, T_{2}$ ), not necessarily a twin.

Proposition 2.7. Let $T=\left(T_{1}, x_{1}, x_{2}, T_{2}\right)$, and let the real number $\lambda$ be not an eigenvalue of $T_{1} \backslash\left\{x_{1}\right\}$ or $T_{2} \backslash\left\{x_{2}\right\}$. For $i=1,2$, denote by $e^{(i)}$ and $\varepsilon_{i}$ the partial eigenvector and the exitvalue of $T_{i}$ with respect to $x_{i}$. Then $\lambda$ is an eigenvalue of $T$ iff $\varepsilon_{1} \varepsilon_{2}=1$; in this case, every $\lambda$-eigenvector has the form

$$
\begin{equation*}
e=\binom{s_{1} e^{(1)}}{s_{2} e^{(2)}}, \quad s_{2}=s_{1} \varepsilon_{1}, \quad s_{1}=s_{2} \varepsilon_{2} \tag{6}
\end{equation*}
$$

in particular, $\lambda$ is a simple eigenvalue of $T$.

Proof. Suppose that $\lambda$ is an eigenvalue of $T$, and $e$ a $\lambda$-eigenvector. The numbers $s_{i}=e_{x_{i}}$ are nonzero, since otherwise $T_{i} \backslash\left\{x_{i}\right\}$ would have an eigenvalue $\lambda$ corresponding to the restriction of $e$ to $T_{i} \backslash\left\{x_{i}\right\}$. Hencc we can write the restriction of $e$ to $T_{i}$ in the form $s_{i} \bar{e}^{(i)}$, and $\bar{e}^{(i)}$ is easily seen to be the (unique) partial eigenvector $e^{(i)}$ of $T_{i}$. Moreover, the relations (1) for $x=x_{1}$ and $x=x_{2}$ give $s_{2}=s_{1} \varepsilon_{1}, s_{1}=s_{2} \varepsilon_{2}$; in particular $\varepsilon_{1} \varepsilon_{2}=1$. Conversely, if $\varepsilon_{1} \varepsilon_{2}=1$, then (6) defines an eigenvector of $T$.

## 3. SPECIAL VERTICES OF A TREE

From now on, $T$ is a tree. In this section we prove some results about the possible zero entries of an eigenvector of $T$. Call a vertex $x \in T \lambda$-essential if
there is a $\lambda$-eigenvector $e$ with $e_{x} \neq 0$, $\lambda$-special if it is not essential, but adjacent with some essential point, and $\lambda$-inessential otherwise. Call a tree $T$ $\lambda$-primitive if $\lambda$ is an eigenvalue of $T$ and all vertices are $\lambda$-essential.

A subtree $T_{1}$ of $T$ is called extremal if, for some vertex $x \in T, T_{1}$ is a component of $T \backslash\{x\}$; equivalently, if the graph $T_{2}=T \backslash T_{1}$ (obtained by deleting the vertices of $T_{1}$ ) is nonempty and connected, hence also a tree. Note that in this case, $T_{1}$ and $T_{2}$ are connected by a unique edge $x_{1} x_{2}$ with $x_{1} \in T_{1}, x_{2} \in T_{2}$, and $T=\left(T_{1}, x_{1}, x_{2}, T_{2}\right)$.

Theorem 3.1. A tree $T$ is $\lambda$-primitive iff $T$, but no extremal subtree of $T$, has eigenvalue $\lambda$.

Proof. Let $T$ be a tree with eigenvalue $\lambda$, and let $e$ be a $\lambda$-eigenvector. If $e_{x}=0$ for some $x \in T$, then the relations (1) show that each component of $T \backslash\{x\}$ which contains a vertex $y$ with $e_{y} \neq 0$ is an extremal subtree with eigenvalue $\lambda$. Hence if $T$ contains no extremal subtree with eigenvalue $\lambda$, then $T$ is $\lambda$-primitive.

Conversely, if $T$ contains extremal subtrees with eigenvalue $\lambda$, then let $T_{1}$ be minimal (with respect to inclusion) among these. Denote the tree $T \backslash T_{1}$ by $T_{2}$, so that $T=\left(T_{1}, x_{1}, x_{2}, T_{2}\right)$ for certain $x_{1} \in T_{1}, x_{2} \in T_{2}$. Since $T_{1}$ is minimal, $\lambda$ is not an eigenvalue of $\left.T_{1} \backslash x_{1}\right\}$. Now the restriction $e^{(1)}$ of $e$ to $T_{1}$ is a multiple of the partial eigenvector of $T_{1}$ with respect to $x_{1}$ (by Proposition 2.7), and by Corollary 2.2, $e^{(1)}$ is in fact a $\lambda$-eigenvector of $T_{1}$. Hence by (1), $e_{x_{2}}=0$. Since this holds for every $\lambda$-eigenvector $e, x_{2}$ is not $\lambda$-essential, and so $T$ is not $\lambda$-primitive.

Corollary 3.2. If $\lambda$ is a multiple eigenvalue of a tree $T$, then $T$ contains a $\lambda$-special point.

Proof. For any $x \in T, T \backslash\{x\}$ still has $\lambda$ as an eigenvalue; hence some component of $T \backslash\{x\}$, which is an extremal tree, has $\lambda$ as an eigenvalue. By Theorem 3.1, $T$ is not primitive and hence contains a special point.

Corollary 3.3. A $\lambda$-primitive tree has $\lambda$ as a simple eigenvalue, and the corresponding eigenvector has no zero entries.

Theorem 3.4. Let $T$ be a tree with f-fold eigenvalue $\lambda, f \geqslant 1$. Then:
(i) If $x$ is an essential vertex then $\lambda$ is an $(f-1)$-fold eigenvalue of $T \backslash\{x\}$.
(ii) If $x$ is an inessential vertex, then $\lambda$ is an f-fold eigenvalue of $T \backslash\{x\}$.
(iii) If $x$ is a special vertex, then $\lambda$ is an $(f+1)$-fold eigenvalue of $T \backslash\{x\}$; moreover, $x$ is adjacent to at least two essential vertices.

Proof. (i): In [5], it is shown that $P(T \backslash\{x\}, t) / P(T, t)$, considered as a function in $t$, has simple poles just at those eigenvalues $\lambda$ of $T$ for which there is some $\lambda$-eigenvector $e$ with $e_{x} \neq 0$ (see Theorem 5.2 of [5], and its proof). Hence $\lambda$ is an $(f-1)$-fold eigenvalue of $T \backslash\{x\}$ iff $x$ is $\lambda$-essential.
(ii) and (iii): If $x$ is not essential, then an eigenvector $e$ of $T$ is also an eigenvector of $T \backslash\{x\}$. If $x$ is inessential, then the converse also holds, so $T \backslash\{x\}$ has $\lambda$ as an $f$-fold eigenvalue. But if $x$ is special, then one extra relation $\Sigma_{y \sim x} e_{y}=0$ has to be satisfied. So the eigenspace of $T \backslash\{x\}$ for $\lambda$ must have one dimension more, i.e., $\lambda$ is an $(f+1)$-fold eigenvalue of $T \backslash\{x\}$. If $x$ were only adjacent with one essential point $y$, then the relation would reduce to $e_{y}=0$, contradicting the fact that $y$ is essential.

Corollary 3.5. Let $T$ be a tree with f-fold eigenvalue $\lambda, f \geqslant 1$. Denote by $E$ the forest induced on the essential vertices. Then every component of $E$ has $\lambda$ as a simple eigenvalue. Moreover, $f$ equals the number of components of $E$ minus the number of special vertices of $T$.

Proof. For each $x \in E$, some eigenvector $e$ of $T$ has $e_{x} \neq 0$. Each such $e$ is also an eigenvector of $E$, and hence of the component of $E$ containing $x$. So every component of $E$ is $\lambda$-primitive, and by Corollary 3.3 , has $\lambda$ as a simple eigenvalue. From this, and the preceding theorem, the second part follows.

Example. Take $\lambda=0$. By Theorem 3.1, a 0 -primitive tree consists of a single vertex, since every end vertex is an extremal subtree with eigenvalue $\lambda=0$. In particular, for an arbitrary tree, $E$ is a coclique. The 0 -special vertices are closely related to $k$-matchings (sets of $k$ disjoint edges) of $T$. In fact, following some remarks by Codsil (private communication), we have

Proposition 3.6. Let $T$ be a tree with $n$ vertices, and let $k$ be the maximal size of a matching. Then:
(i) 0 is an $(n-2 k)$-fold eigenvalue of $T$.
(ii) No vertex is O-inessential.
(iii) A vertex is 0 -special iff it is common to all $k$-matchings.
(iv) An edge contains one or two 0 -special vertices.
(v) There are exactly $k 0$-special vertices, and every edge of a $k$-matching contains a unique 0 -special vertex.

Proof. (i) is well known; see e.g. Proposition 1.1 of [2].
If $x \in T$ is not common to all $k$-matchings then the maximal size of a matching of $T \backslash\{x\}$ is $k$, whence 0 is an $(n-1-2 k)$-fold eigenvalue of $T \backslash\{x\}$ [apply (i) to $T \backslash\{x\}$ ]. Hence $x$ is 0-essential (Theorem 3.4). On the other hand, if $x \in T$ is common to all $k$-matchings, then the maximal size of a matching of $T \backslash\{x\}$ is $k-1,0$ is an $(n+1-2 k)$-fold eigenvalue of $T \backslash\{x\}$, and $x$ is 0 -special. This proves (ii) and (iii). Since $E$, the set of 0 essential vertices, is a coclique, (iv) holds.

Finally, denote by $e$ and $s$ the numbers of 0 -essential and 0 -special vertices, respectively. $E$ is an $e$-coclique; hence by (i) and Corollary 3.5, the multiplicity of 0 is $n-2 k=e-s$. But $n=e+s$, whence $s=k$; i.e., $T$ contains $k 0$-special vertices. On each edge of a $k$-matching there is at least one, and hence exactly one, of these vertices.

## 4. THE SECOND LARGEST EIGENVALUE OF A TREE

Here we investigate the structure of trees with $\lambda_{2}(T) \leqslant \lambda$. Let us call a tree $T$-trivial if there is a vertex $x \in T$ such that $\lambda_{1}(T-\{x\}) \leqslant \lambda-$ equivalently, if all components of $T \backslash\{x\}$ are trees with largest eigenvalue $\leqslant \lambda$. Because the eigenvalues of $T \backslash\{x\}$ interlace those of $T$, a $\lambda$-trivial tree has $\lambda_{2}(T) \leqslant \lambda$. It is easy to find sufficient conditions for $\lambda$-triviality:

Proposition 4.1. If a tree $T$ with $\lambda_{2}(T) \leqslant \lambda$ contains extremal subtrees with eigenvalue $\lambda$, then $T$ is $\lambda$-trivial.

Proof. Let $T_{0}$ be an extremal subtree of $T$ with eigenvalue $\lambda$, and let $x$ be the vertex such that $T_{0}$ is a component of $T \backslash\{x\}$. Since the eigenvalues of $T \backslash\{x\}$ interlace those of $T, T \backslash\{x\}$ has exactly one eigenvalue $>\lambda_{2}(T)$, which must be $\lambda$; the other eigenvalues are $\leqslant \lambda_{2}(T) \leqslant \lambda$. Hence $T$ is $\lambda$-trivial.

Using Theorem 3.1 and Corollary 3.2, we immediately obtain

Corollary 4.2. If $\lambda_{2}(T)$ is a multiple eigenvalue of a tree $T$, then $T$ is $\lambda_{2}$-trivial.

We are now able to prove our main result. Together with Theorem 2.6, it characterizes all trees with $\lambda_{2}(T) \leqslant \lambda$.

Theorem 4.3. A tree $T$ with $\lambda_{2}(T) \leqslant \lambda$ is either $\lambda$-trivial or a $\lambda$-twin.

Proof. Suppose that $T$ is not $\lambda$-trivial. By Proposition 4.1, $T$ contains no extremal subtree with eigenvalue $\lambda$. But there are extremal subtrees with largest eigenvalue $>\lambda$, since for all $x \in T, \lambda_{1}(T \backslash\{x\})>\lambda$. Let $T_{1}$ be an extremal subtree, minimal with respect to the property $\lambda_{1}\left(T_{1}\right)>\lambda$. With $T_{2}=T \backslash T_{1}, T$ can be written as $T=\left(T_{1}, x_{1}, x_{2}, T_{2}\right)$. By minimality of $T_{1}$, $\lambda_{1}\left(T_{1} \backslash\left\{x_{1}\right\}\right) \leqslant \lambda$, and hence $<\lambda$; so $T_{1}$ is critical at $x_{1}$.

Now $T$ is not $\lambda$-trivial; hence $T \backslash\left\{x_{1}\right\}$ has an eigenvalue $>\lambda$, and so $\lambda_{1}\left(T_{2}\right)>\lambda$. By construction, $\lambda_{1}\left(T_{1}\right)>\lambda \geqslant \lambda_{2}(T)$. Since $T \backslash\left\{x_{2}\right\}$ is the disjoint union of $T_{1}$ and $T_{2} \backslash\left\{x_{2}\right\}, \lambda_{1}\left(T_{1}\right)$ is an eigenvalue $\geqslant \lambda_{2}(T)$ of $T \backslash\left\{x_{2}\right\}$. By interlacing, the other eigenvalues of $T \backslash\left\{x_{2}\right\}$ are $\leqslant \lambda_{2}(T) \leqslant \lambda$. In particular, the eigenvalues of $T_{2} \backslash\left\{x_{2}\right\}$ are $\leqslant \lambda$, and hence even $<\lambda$. Therefore $T_{2}$ is critical at $x_{2}$, and $T$ is a twin.

Remark. It is easy to see that a $\lambda$-twin cannot be $\lambda$-trivial, and that a tree can be written in at most one way as a $\lambda$-twin.

In Theorem 2.6, we showed how to decide whether a $\lambda$-twin $T$ has $\lambda_{2}(T)<\lambda$ or $\lambda_{2}(T)=\lambda$; the next result complements this by a criterion for $\lambda_{2}(T)=\lambda$ for $\lambda$-trivial trees. Note that $\lambda_{2}(T)<\lambda$ if this criterion fails.

Theorem 4.4. Let $T$ be a $\lambda$-trivial tree, and $x \in T$ a vertex with $\lambda_{1}(T \backslash$ $\{x\}) \leqslant \lambda$. Then $\lambda_{2}(T)=\lambda$ iff $f+1 \geqslant 2$ components of $T \backslash\{x\}$ have (largest) eigenvalue $\lambda$; in this case, $x$ is a special vertex of $T$, and $\lambda$ is an $f$-fold eigenvalue of $T$.

Proof. A Otrivial tree is a star, and the statement is obvious. Hence assume that $\lambda \neq 0$. Suppose that $\lambda_{2}(T)=\lambda$, and let $e$ be a $\lambda$-eigenvector of $T$. Denote by $T^{\prime}$ the tree induced on the set consisting of $x$ and those components of $T \backslash\{x\}$ which have some nonzero entry in $e$. Suppose first that $T^{\prime} \backslash\{x\}$ contains a component $T_{0}$ with largest eigenvalue $\lambda$; let $x_{0}$ be the vertex in $T_{0}$ adjacent to $x$. If $e_{x_{0}}=0$, then the restriction of $e$ to $T_{0} \backslash\left\{x_{0}\right\}$ is a $\lambda$-eigenvector of $T_{0} \backslash\left\{x_{0}\right\}$ (nonzero by construction of $T^{\prime}$ ). But $\lambda_{1}\left(T_{0} \backslash\left\{x_{0}\right\}\right)<\lambda_{1}\left(T_{0}\right)=\lambda$, contradiction. Hence $e_{x_{0}} \neq 0$, and $e$ can be normalized so that $e_{x_{0}}=1$. Then the restriction of $e$ to $T_{0}$ is a partial eigenvector of $T_{0}$, and by Theorem 2.2, it is an eigenvector. Therefore, the relations (1) for $x=x_{0}$ imply $e_{x}=0$. This holds for every $\lambda$-eigenvector $e$ of $T$; so $x$ is special. Now apply Theorem 3.4 (iii) to get the desired result.

Next suppose that $T^{\prime} \backslash\{x\}$ has no component with largest eigenvalue $\lambda$. Then $e_{x} \neq 0$, since otherwise $e$ is a $\lambda$-eigenvector of $T^{\prime} \backslash\{x\}$, and $\lambda_{1}\left(T^{\prime} \backslash\{x\}\right)<\lambda$. Since $\lambda \neq 0$, some neighbor $x_{1}$ of $x$ must have $e_{x_{1}} \neq 0$ [by (1)]. Write $x_{2}=x$, write $T_{1}$ for the component of $T^{\prime} \backslash\left\{x_{2}\right\}$ containing $x_{1}$, and $T_{2}$ for the component of $T^{\prime} \backslash\left\{x_{1}\right\}$ containing $x_{2}$. Then $T^{\prime}=\left(T_{1}, x_{1}, x_{2}, T_{2}\right)$, and $\lambda_{1}\left(T_{1}\right)<$
$\left.\lambda, \lambda_{1}\left(T_{2} \backslash x_{2}\right\}\right)<\lambda$. Denote by $e^{(i)}$ and $\varepsilon_{\mathrm{i}}$ the partial eigenvector and exitvalue of $T_{i}$ with respect to $x_{i}$. Then by Theorem 2.4, $e^{(1)}>0, \varepsilon_{1}>0, e^{(2)}>0$, and by Proposition 2.7, $e$ or $-e$ is positive on $T^{\prime}$, hence nonnegative on $T$. But this implies (Perron-Frobenius) that $\lambda=\lambda_{1}(T)>\lambda_{2}(T)$, a contradiction.

The converse follows again from Theorem 3.4(iii).
The theorems just proved have an interesting corollary. Let $e$ be a $\lambda$-igenvector of a tree $T$. We say that an edge $x y$ of $T$ is a sign change of $e$ if $e_{x} e_{y}<0$. From our Theorems 4.3 and 4.4, and Theorems 2.4(iii) and 2.6(ii), we find:

Corollary 4.4a. Let e be an eigenvector for the second largest eigenvalue of a tree. If all entries of $e$ are nonzero, then $e$ has exactly one sign change.

This is a special case of the following theorem [6]:
Theorem 4.5 (Godsil). Let e be an eigenvector for the eigenvalue $\lambda_{i}(T)$ of a tree. If all entries of e are nonzero, then e has exactly $i-1$ sign changes.

Note that the special case $i=1$ (no sign change) of Theorem 4.5 is a consequence of Perron-Frobenius theory. Also, the case where $T$ is a path is a special case of a result of Gantmacher and Krein [4] on oscillation matrices (their Satz 6 in Kap. II, §5).

Example. We determine the trees with $\lambda_{2} \leqslant 1$. It is obvious that a tree with largest eigenvalue $<1$ is a single vertex, and a tree with largest eigenvalue $=1$ is a single edge. Hence the 1 -trivial graphs are of the shape


Also, if a tree $T$ is 1-critical at $x$, then $T \backslash\{x\}$ is a coclique of size $s \geqslant 2$, say, and the exitvalue is $\varepsilon=1-s \leqslant-1$. Hence the only way to get a 1 -twin with $\varepsilon_{1} \varepsilon_{2} \leqslant 1$ is to take $s_{1}=s_{2}=2$; by Theorem 2.6 , the only twin with $\lambda_{2} \leqslant \lambda$ is


Hence we have:

Theorem 4.6. A tree with $\lambda_{2} \leqslant 1$ either is of shape (*), or is the graph (**).

Remark. A different proof can be given by forbidden subtrees. In fact, by the tables in [2], the second largest eigenvalues of the trees

are $>1$, and the trees $(*),(* *)$ are the only trees with no such induced subtree.

Example. A star with $n=s+1$ vertices,

-or for short

—has largest eigenvalue $\sqrt{s}=\sqrt{n-1}$, since the indicated vector is a positive eigenvector for $\lambda=\sqrt{s}$. Hence a tree $T$ with a vertex $\boldsymbol{x}$ such that $T \backslash\{\boldsymbol{x}\}$ is a disjoint union of $m$ stars with $s+1$ vertices is $\sqrt{s}$-trivial; hence $\lambda_{2} \leqslant \sqrt{s}$. If $m \geqslant 2$, then by Theorem 4.4, $\lambda_{2}=\sqrt{s}$ is an $(m-1)$-fold eigenvalue of $T$. In particular, the three trees

have $n=2 s+3$ vertices and $\lambda_{2}=\sqrt{s}=\sqrt{(n-3) / 2}$ (in particular, there are trees with arbitrarily large $\lambda_{2}$ ). The trees ( $* * *$ ) are extremal in the following sense:

Theorem 4.7. Let $T$ be a tree with $n$ vertices. Then
(i) $\lambda_{1}(T) \leqslant \sqrt{n-1}$, with equality iff $T$ is a star;
(ii) $\lambda_{2}(T) \leqslant \sqrt{(n-3) / 2}$, with equality iff $T$ is one of the trees $(* * *)$.

Proof. (i): $T$ is bipartite; hence with $\lambda_{1}$, also $-\lambda_{1}$ is an eigenvalue of $T$. Therefore, $2 \lambda_{1}^{2} \leqslant \Sigma \lambda_{i}^{2}=\operatorname{tr} A^{2}=2 \times$ (number of edges of $\left.T\right)=2(n-1)$, and so $\lambda_{1} \leqslant \sqrt{n-1}$. If equality holds, then $\lambda_{2}=\cdots=\lambda_{n-1}=0, \lambda_{n}=-\lambda_{1}$. Hence $A$ has rank 2. Since $T$ is bipartite, this implies that $T$ is complete bipartite, and since $T$ is a trec, it must be a star.
(ii): There is a vertex $x \in T$ such that all components of $T \backslash\{x\}$ have size $\leqslant(n-1) / 2$. For if $T \backslash\left\{x_{1}\right\}$ has a component $T_{0}$ of size $\geqslant n / 2$, then the remaining components have size $<n / 2-1$ together; thus if $x_{2}$ is the neighbor of $x_{1}$ in $T_{0}$ then in $T \backslash\left\{x_{2}\right\}$, the component of $x_{1}$ has size $<n / 2$ and hence $\leqslant(n-1) / 2$, and the other components of $T \backslash\left\{x_{2}\right\}$ are contained in $T_{0} \backslash\left\{x_{2}\right\}$ and hence have size less than the size of $T_{0}$. If we repeat this process, we obtain after a finite number of steps an $x$ with the required property.

Now, by interlacing, $\lambda_{2}(T) \leqslant \lambda_{1}(T \backslash\{x\}) \leqslant \sqrt{(n-3) / 2}$ by (i), and equality implies that some component $T_{1}$ of $T \backslash\{x\}$ has size $(n-1) / 2$ and is a star. But then $T_{1}$ is an extremal subtree with eigenvalue $\sqrt{(n-3) / 2}=\lambda_{2}$, and by Theorem 4.4, $T \backslash\{x\}$ has another component $T_{2}$ with eigenvalue $\lambda_{2}$, which again must be a star of size $(n-1) / 2$. Now we already have all vertices, and the only ways of getting a tree are those shown in ( $* * *$ ).

Remark. In particular, for a tree with an even number $n$ of vertices, $\lambda_{2}(T)<\sqrt{(n-3) / 2}$. Probably the unique extremal trees in this case are

with $n=2 s+4$ vertices; this can be verified for $n \leqslant 10$ by the tables in [2]. The second largest eigenvalue of $(* * * *)$ is the positive root $\lambda$ of the
equation

$$
\lambda^{3}+\lambda^{2}-(s+1) \lambda-s=0,
$$

as can be seen from the indicated eigenvector. Since $s=\lambda^{2}-\lambda /(\lambda+1)<\lambda^{2}$ $<\lambda^{2}+1 /(\lambda+1)=s+1$, it follows that

is $\lambda$-critical, and both exitvalues are $\varepsilon_{1}=\varepsilon_{2}=-1$. So we have a twin with $\varepsilon_{1} \varepsilon_{2}=1$ (cf. Proposition 2.7). (It is also seen that there is exactly one sign change.)

We end this section with explicit recursive formulas for the computation of partial eigenvectors and exitvalues of a tree. Let $T$ be a tree, and $z \in T$. Denote the neighbors of $z$ by $z_{1}, \ldots, z_{s}$. Then the components of $T \backslash\{z\}$ can be labeled as $T_{1}, \ldots, T_{s}$ in such a way that $z_{i} \in T_{i}$ for $i=1, \ldots, s$. Let $e_{i}$ and $\varepsilon_{i}$ be the partial eigenvector and exitvalue of $T_{i}$ with respect to $z_{i}$. If all $\varepsilon_{i}$ are nonzero, then the partial eigenvector $e$ of $T$ has $e_{z}=1$, and agrees on $T_{i}$ with $\varepsilon_{i}^{-1} e^{(i)}$ [by the relations (1)], and so is determined. Also, the exitvalue $\varepsilon$ of $T$ with respect to $z$ is given by the formula

$$
\varepsilon=\lambda-\sum_{i} \varepsilon_{i}^{-1}
$$

These remarks can be used to find a partial eigenvector and/or an exitvalue recursively. The process breaks down if some $\varepsilon_{i}$ becomes zero. But then $T_{i}$ is an extremal subgraph with eigenvalue $\lambda$; so this breakdown cannot occur in the range $\lambda>\lambda_{1}(T \backslash\{z\})$.

Note that in actual computation it may be more convenient to compute a multiple of the partial eigenvector, and normalize at the end of the computation.

Remark. After submission of the manuscript, I learnt that Godsil's Theorem 4.5 is a particular case of a theorem of Fiedler [3], and that a paper by Maxwell [8] contains the case $\lambda_{2}(T) \neq \lambda$ of my Theorem 4.3. I want to thank Jürgen Garloff and Barry Monson for calling my attention to these papers.

I want to thank Chris Godsil for valuable suggestions which improved Section 3.

## REFERENCES

1 A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, Academic, New York, 1979.
2 D. M. Cvetcovic, M. Doob, and H. Sachs, Spectra of Graphs, Academic, New York, 1980.
3 M. Fiedler, Eigenvectors of acyclic matrices, Czechoslovak Math. J., 25(100):607618 (1975).
4 F. R. Gantmacher and M. G. Krein, Oszillationsmatrizen, Oszillationskerne und kleine Schwingungen mechanischer Systeme, Akademie Verlag, Berlin, 1960.
5 C. D. Godsil, Matchings and walks in graphs, J. Graph Theory, 5:285-297 (1981).
6 C. D. Godsil, Spectra of trees, in Proceedings of the Conference on Convexity and Graph Theory (March 1981), to appear.
7 J. L. Koszul, Lectures on hyperbolic Coxeter groups, Dept. of Mathematics, Univ. of Notre Dame, 1967.
8 G. Maxwell, Hyperbolic trees, J. Algebra 54:46-49 (1978).


[^0]:    *This work was done while the author was at the Technische Hogeschool Eindhoven with grant No. B-61-99 of the Netherlands Organization for the Advancement of Pure Research (Z.W.O.).

